Growing plants aboard spacecraft consumes valuable space and requires regular maintenance. The Growing Beyond Earth project team is developing a microgravity-compatible plant growth chamber that maximizes production in a constrained volume. For the design portion of our project, we have so far achieved a fourfold increase in space utilization compared to The Vegetable Production System (Veggie) aboard the ISS. Our goal is to maintain or efficientize this space utilization and automate our system’s lighting, air circulation, and watering.

To that end, our project group is looking for developers and mechanical engineers--proficiency in C/C++ or CAD are desirable.

Energy-Efficient Hydroponics System

GroTech @ Berkeley is a club for solving problems, building towards solutions, and expanding into the possibilities found on agriculture’s vast green horizons. The Hydroponics Team holds these foundations dearly, as we incorporate the interdisciplinary ideas of each of our group’s members into the development of this new and exciting project. Typically as a means of gardening, hydroponics is the idea of using water, instead of soil, to deliver essential nutrients needed in cultivating plants.

With this knowledge functioning as our foundation over various Zoom calls, the Hydroponics Team is committed to a defined purpose for the future: to develop an energy efficient and self-sustaining hydroponic model that can be adapted for various needs. Through this purpose, the Hydroponics Team’s goal is to build a technologically innovative system that demonstrates the viability of hydroponics, not only as a means of at-home gardening, but also for larger scale community gardens through developing a marketable property. Through this innovative experience, each member of the Hydroponic Team grows, as we advance each other's knowledge of botany, microbiology, mechanics, and chemistry. This exchange of knowledge surrounding the hydroponic system, the Hydroponics Team seeks in the future to give back to the community by providing our finished product as a method to enrich the education of middle school and high school students, much like the very exchange of concepts that bring each of us together.

But, in order to make our vision become reality, the Hydroponics Team must put to test our skills. At the Hydroponics Team, we will be applying and learning the following skills: woodworking, mechanical engineering, CAD design, and overall gardening knowledge. Most importantly, the desire to effectively create, communicate, and collaborate with others is what is valued on the Hydroponic Team. Thank you.


The Growing Beyond Earth Maker Challenge (hosted by Fairchild Tropic Botanical Garden), challenges makers from the high school, college, and professional level to design, prototype, and eventually build and test plant growth chambers optimized for micro-gravity environments. Submissions take the form of instructables and are judged by a panel of NASA botanists. Each submission is standardized to growing red romaine lettuce, must fit within a 50 cm cube, take into consideration lighting, irrigation, and airflow, and improve upon some aspect of NASA's current plant growth chamber, Veggie.

NASA's current design is capable of sustaining 6 plants, all of which are grown on the same plane. To fully utilize the vertical space provided, our team devised a solution consisting of 3 layers, 2 of which would articulate based on the growth cycles of the lettuce. Such a design would allow our team to sustain 18 plants in perfect conditions, which is 12 more than NASA's Veggie.

Our team began the prototyping process by constructing a to-scale, unpowered wooden model of our proposed design. From there, we installed LED strips and a fan to provide plants with light and circulation respectively, as well as light and temperature sensors to monitor the growing environment.

At this stage, we also began prototyping calcined clay based plant pots, which receive water through a felt-based wicking system. Our plants pots were then placed inside of our wooden frame so that we could monitor the growing phases of the lettuce and research the conditions in which they would grow properly.

The design that succeed our wooden prototype bore the name SeedShuttle. Rather than sustaining plants on different platforms in a vertical configuration, plants grew out of a central pillar toward the edge of the frame in a radial configuration. Not only did this allow for a higher growing capacity, but features such as staggered growth phases, automation, air circulation, and lighting all became far simpler to implement. Rather than strictly using wood, we constructed the frame out of more durable materials, such as MDF and aluminum.

This design constituted our Phase 1 submission for the Growing Beyond Earth Maker Contest.